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Abstract

Dynamic Time Warping (DTW) is certainly the most rele-

vant distance for time series analysis. However, its quadratic

time complexity may hamper its use, mainly in the analysis

of large time series data. All the recent advances in speed-

ing up the exact DTW calculation are confined to similarity

search. However, there is a significant number of impor-

tant algorithms including clustering and classification that

require the pairwise distance matrix for all time series ob-

jects. The only techniques available to deal with this issue

are constraint bands and DTW approximations. In this pa-

per, we propose the first exact approach for speeding up the

all-pairwise DTW matrix calculation. Our method is exact

and may be applied in conjunction with constraint bands.

We demonstrate that our algorithm reduces the runtime in

approximately 50% on average and up to one order of mag-

nitude in some datasets.

1 Introduction

Dynamic Time Warping (DTW) is certainly the most
relevant distance for time series analysis. Such relevance
has been evidenced by a large body of experimental re-
search showing that, for instance, the 1-nearest neighbor
DTW (1-NN-DTW) algorithm frequently outperforms
more sophisticated methods on a large set of benchmark
datasets [12].

The main issue with DTW is its computational
complexity. A straightforward implementation of DTW
is quadratic in time and space. Although a simple trick
can make DTW linear in space1, the time complexity is
a more difficult matter.

An important observation is that all the recent
advances in speed-up DTW calculations are confined
to similarity search. However, there is a significant
number of data mining algorithms, including clustering
and classification, that require the pairwise distance
matrix for all time series objects.

In the particular case of time series clustering, the
authors of [13] show that the calculation of the all-
pairwise distance matrix for DTW completely domi-
nates the runtime of well-known clustering algorithms.

∗Instituto de Ciências Matemáticas e de Computação, Univer-
sidade de São Paulo, Brazil – {diegofsilva, gbatista}@icmc.usp.br

1When the only output of interest is the final distance and the

warping path can be disregarded.

For instance, for a large dataset, the computation of the
all-pairwise distance matrix would take approximately
127 days using off-the-shelf desktop computers and a
näıve quadratic DTW algorithm. On the same com-
puter, the calculation of a hierarchical clustering given
an already computed pairwise distance matrix would
take only 4 seconds.

In case a researcher or practitioner is interested in
applying DTW with algorithms that require the all-
pairwise distance matrix, the only speed-up techniques
available are constraint bands (also known as warping
windows) [6, 3] or DTW approximations [8, 10].

In this paper, we propose a novel approach for
speeding up the all-pairwise DTW matrix calculation.
Our method uses an upper bound estimation to prune
unpromising warping alignments. In other words, our
method prunes DTW partial paths that will lead to
unfruitful warping paths by comparing the current
calculated value with a distance upper bound.

2 Background

Euclidean distance (ED) is the most established dis-
tance measure between time series. The ED measures
the dissimilarity between time series comparing the ob-
servations at the exact same time. For this reason, the
ED can be very sensitive to distortions in the time axis.
Many applications require a more flexible observation
matching, in which an observation of the time series xi

at time i can be associated to an observation of the time
series yj at time j 6= i.

The DTW distance achieves an optimal nonlinear
alignment of the observations under boundary, mono-
tonicity and continuity constraints. DTW is usually
calculated using a dynamic programming algorithm.
Equation 2.1 describes the initial condition of the al-
gorithm2.

(2.1) dtw(i, j) =

{
∞, if i = 0 or j = 0

0, if i = j = 0

Equation 2.2 presents the recurrence relation of
DTW algorithm.

2Further in this document, we will assume that the time series

objects may have different lengths. Therefore, x = x1, x2, . . . , xN

and y = y1, y2, . . . , yM .



(2.2) dtw(i, j) = c(xi, yj) + min


dtw(i− 1, j)

dtw(i, j − 1)

dtw(i− 1, j − 1)

where i = 1 . . . N and j = 1 . . .M . c(xi, yj) is the cost of
matching two observations xi and yj , usually calculated
with squared Euclidean distance.

The resulting value in dtw(N,M) is the DTW dis-
tance between x and y. Thus, the algorithm iteratively
fills an array with the lowest accumulated cost for all
alignments to each pair of observations to be matched.
Figure 1 shows an example of the optimal non-linear
alignment found by this algorithm and how it is repre-
sented in the DTW calculation matrix.

Figure 1: Optimal non-linear alignment (left) and the
matrix obtained by the dynamic programming algo-
rithm, highlighting the optimal alignment (right)

In order to improve the efficiency of DTW calcu-
lations, the use of warping windows is common [6, 3].
Warping window, or constraint band, defines the maxi-
mum allowed time difference between two matched ob-
servations. From the algorithm standpoint, this tech-
nique restricts the values that need to be computed to
a smaller area around the main diagonal of the matrix.

However, the exact window size that would provide
the best results for a dataset is data dependent. Outside
classification problems with 1-NN, there are no clear
guidelines to set this parameter and possibly the best
approach is to evaluate the results for several window
sizes. We will return to this topic in the Section 6.2.

3 On the Need of the All-Pairwise Distance
Matrix

Although the community has mainly focused on the
speed-up of DTW calculation for similarity search, other
algorithms, for instance in clustering and classification
require the all-pairwise DTW matrix.

Recently, the community has devoted some effort
to improve the efficiency of time series clustering al-
gorithms. For instance, Zhu et al. have framed the
problem of calculating the all-pairwise DTW matrix
as an anytime algorithm and applied such approach
to clustering [13] and Ulanova et al. have proposed

new techniques to cluster temporal objects in admis-
sible time [11].

The need of the all-pairwise distance matrix is easily
seen in the clustering task. Many clustering algorithms
do not require the objects as input, but their relations.
In the case of time series mining, the relations can be
defined as the distance between each pair of instances.
For example, this is the case of the most methods of
the family of hierarchical clustering and the well-known
k-medoids.

The need of all-pairwise distance matrix is not
restricted to clustering algorithms. A recent advance
in time series classification proposes the use of machine
learning classifiers with distances representing values of
attributes [4]. Being n the number of training examples,
this approach constructs an n× n attribute-value table
in which the values of attributes are defined by the
distance of one object to all other objects in the training
set. Therefore, in order to construct a classification
model, this approach needs the whole distance matrix
between the training examples. For classifying a new
example, it needs the distance between the query time
series and all the training examples.

4 Related Work

Due to the relevance of DTW in time series mining and
its high computational cost, the scientific community
has proposed several approaches to deal with DTW in
tasks involving large amounts of data.

4.1 Similarity Search Although similarity search is
not the focus of this work, we briefly review the intuition
of these approaches to clarify the reasons they are not
applicable to all-pairwise distance calculations.

Suppose that we are interested in finding the k most
similar objects to a query time series and a variable best-
so-far stores the true DTW distance to the k-th nearest
object known up to a certain moment of the algorithm
execution. Consider a lower bound function (LB) that
returns a value that is certainly lower or equal the true
DTW between two objects. Clearly, if the LB between a
given training object (ok) and a query time series (q) is
higher than the best-so-far, we know that ok is not one of
the k nearest neighbors of q. Therefore, such an object
can be discarded. It is obviously only applicable when
we have no interest in those objects whose distance are
greater than the best-so-far.

The main challenge on speeding up the exact com-
putation of the all-pairwise matrix is that we cannot
rely on techniques that avoid computing the DTW dis-
tance for certain pairs of objects. The only resource is
to improve the internal efficiency of the DTW compu-
tation.



4.2 DTW Approximations Distance functions
that approximate DTW are a popular approach to
speed up DTW calculations. Since these methods
only require two time series objects as input, they
are directly applicable to calculating the all-pairwise
distance matrix.

Several approaches were proposed in the literature
with this purpose. Some examples are FastDTW [8] and
Lucky Time Warping [10]. Approximations may also be
used to fill the distance matrix in anytime fashion [13].

The main drawback with these approaches is that
they do not provide any guarantees in terms of approxi-
mation error to the true DTW. In other words, the user
has no means of setting an allowable maximum error in
reference to the true DTW.

4.3 Biological Sequences Alignment The prob-
lem of time series alignment is similar to the alignment
of biological sequences, such as proteins and RNA. Usu-
ally, biological sequences are also compared with costly
similarity functions.

In order to improve the running time of sequence
alignment algorithms, Carrillo and Lipman [1] proposed
to expand the function calculations only to partial
alignments that present promising values. First, the
approach calculates a lower bound to the similarity
function and use this value as the threshold to decide
which cells should be expanded in the DTW matrix.
Given a change in any partial alignment, the cells
affected by the changed value are calculated only if
the current value is higher than the threshold defined
by the lower bounding function. Although simple,
this procedure guarantees the calculation of the exact
similarity value.

This strategy was never used directly to speed-up
DTW calculations. However, a similar idea is used as
an intermediate step of a similarity search algorithm
named FTW, described next.

4.4 FTW Fast search method for dynamic Time
Warping (FTW) [7] is the method that shares more sim-
ilarities with our proposal. The authors propose a simi-
larity search method based on a recursive refinement of
a lower bound calculation.

In a coarse representation, the method finds a
lower bound to DTW, using a dynamic programming
algorithm. If the computed lower bound is smaller
than the best-so-far, the method proceeds to a finer
representation. Otherwise, the calculation is aborted,
since the object is not one of the nearest neighbors.

In each level of approximation, the method prunes
the DTW matrix values that are guaranteed to be
greater than the best-so-far. Such an algorithm, called
EarlyStopping, is the most similar method to our pro-

posal. However, our method does not rely on a best-so-
far, which would restrict it to similarity search. Instead,
we use an upper bound, which can be initially set as ED
and refined as the algorithm proceeds in the calculation
of the DTW distance.

In summary, although FTW and our proposal share
some similarities, FTW is a similarity search algorithm
and relies on a best-so-far. So, it is not directly
applicable to calculate the all-pairwise DTW matrix.
Our method prunes warping paths that are greater
than an upper bound in the actual DTW calculation
and is not dependent of a best-so-far. Finally, FTW
increasingly refines time series representations while our
method is computed in the full resolution only;

5 DTW with Pruned Warping Paths

In this paper, we propose the DTW with Pruned Warp-
ing Paths (PrunedDTW). We adapted the traditional
DTW algorithm to recognize and prune cells in the
DTW matrix that are guaranteed to not lead to align-
ments that will result in the optimal path.

We emphasize that our method is similar or con-
siderably faster than DTW and always returns the op-
timal path between two time series objects. In addi-
tion, PrunedDTW can be implemented in linear space.
The additional variables necessary for pruning are O(1)
and for updating the upper bound is O(max(N,M)) in
space. Finally, PrunedDTW supports warping windows
and time series of different lengths.

Even more importantly, PrunedDTW is orthogonal
to all of the proposals of speeding DTW up that we
are aware of. Therefore, PrunedDTW can be used in
conjunction with the literature to further increase the
efficiency of DTW in different tasks, including similarity
search.

5.1 The Intuition Behind our Proposal Our
method is motivated by a very simple observation: fre-
quently, the cells of a DTW matrix vary in a large
range of values. Usually, the values around the optimal
alignment in the matrix are relatively low. In contrast,
even cells moderately distant from the optimal path fre-
quently receive much higher values. Figure 2 shows an
example of DTW matrix for two time series from the
Mallat dataset. There are several regions in the matrix
with accumulated costs that go far beyond the optimal
DTW distance (which is 71.77 in this case).

A cell at a position (i, j) of the DTW matrix
represents the cost of the optimal alignment that starts
at the position (1, 1) and ends at (i, j). For an internal
position in the DTW matrix, i.e., i < N, j < M , if the
cell at (i, j) is part of the optimal path then the optimal
path cost has the cost at (i, j) plus the cost of matching
observations from (i, j) up to (N,M). As the cost of
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Figure 2: DTW matrix between two time series. The
colors indicate the value obtained in each cell of the
matrix

matching two observations is zero or positive value, the
warping paths are monotonically increasing.

Intuitively, if a cell at (i, j) has a high value,
it clearly indicates that such a warping path is very
unlikely to lead to the optimal path. However, as we
want to propose an exact method, we need to establish a
threshold in which we can guarantee that such a partial
warping path will not be part of the optimal path. More
importantly, we need a pruning strategy that explores
the cells with large values and the DTW recurrence
relation of Equation 2.2 to decide when we can start
and stop evaluating the cells. We detail the pruning
strategy and the corresponding algorithm in the next
section.

5.2 Pruning Strategy In order to define which val-
ues are high enough to be pruned, we can use an up-
per bound (UB) of the DTW distance. In this paper,
we use the squared Euclidean distance (sqED) as UB3.
This distance measure is a special case of DTW when
the optimal alignment corresponds to the main diagonal
of the DTW matrix.

Our algorithm calculates the UB as the first step.
We note, however, that it represents a small overhead
since the UB calculation is linear in time complexity.
After estimating the UB, we must specify a criterion so
that we can prune the calculation of DTW matrix cells,
ensuring not to discard any element that may belong
to the optimal alignment. For this purpose, we use
different criteria for pruning the beginning and the end
of each row4 of the matrix. Algorithm 1 details the
proposed method.

Line 17 represents the pruning technique (not pre-
sented so far) that modifies the regular DTW algorithm.
The pruning technique manipulates the values of the
auxiliary variables to determine the beginning of the

3Our approach also works for time series of different lengths

in which the sqED is not defined. We will return to this topic in
Section 5.3.

4Our implementation traverses the matrix in a row-major

order. However, the algorithm can also be implemented by

traversing the matrix in a column-major order.

Algorithm 1 PrunedDTW algorithm
Input: Time series x, with length N

Time series y, with length M
Warping window size ws
Upper bound UB of the DTW between x and y

Output: The distance between x and y according DTW
{Auxiliary variable to prune lower triangular}

1: sc← 1
{Auxiliary variable to prune upper triangular}

2: ec← 1
{Initialize the matrix of DTW calculations }

3: for i = 1 to N do
4: D[i, 0]←∞
5: end for
6: for i = 1 to M do
7: D[0, i]←∞
8: end for
9: D[0, 0]← 0
10: for i = 1 to N do
11: beg ← max(sc, i− ws)
12: end← min(i + ws,M)
13: smaller found← FALSE
14: ec next← i
15: for j = beg to end do
16: D[i, j] = sqED(xi, yj)

+ min(D[i− 1, j − 1], D[i− 1, j], D[i, j − 1])
17: Pruning strategy {copy & paste Algorithm 2 here}
18: end for
19: ec← ec next
20: end for
21: return D[N,M ]

calculation of each row (line 11 of the algorithm) and
its end (which depends on the assignments made in the
lines 14 and 19). Algorithm 2 describes the pruning
criteria in details.

Algorithm 2 Pruning criteria implementation
1: if D[i, j] > UB then
2: if smaller found = FALSE then
3: sc← j + 1
4: end if
5: if j ≥ ec then
6: break {break the for loop / jump to the next row}
7: end if
8: else
9: smaller found← TRUE
10: ec next← j + 1
11: end if

The main idea of the pruning strategy is that the
values related to a row i define which column can be
pruned in the row i + 1. In particular, the variables sc
(start column) and ec (end column) control the range
of columns that needs to be analyzed in the next row.

There are two separate strategies, one for pruning
cells in the lower triangular matrix and the other one
for the upper triangular. For the lower triangular, the
pruning is controlled by the variable sc. The idea is
that, traversing a row from left to right, as long as we
find columns with values greater than UB, it is safe to
say that the same columns on the next row will also
have values greater than UB.

Figure 3 illustrates this idea. For the row 4, the first
two columns have a value greater than UB. Therefore,
the variable sc is set to column 3 (Algorithm 2, line



3) and the processing can safely start at column 3 in
the next row. We can prune the computation of the
variables A and B because of the DTW recurrence
relation represented by the three arrows. The value of
the cell at (i, j) is the cost of matching the observations
xi and yj added to the minimum of the values in three
other cells of the matrix (Algorithm 1, line 16). As the
column 0 is initialized with infinity values, the variable
A will obligatorily have a value greater than UB. The
same occurs to B which depends on A > UB and other
two cells in the previous row also greater than UB. In
contrast, variable C may have a value smaller than UB
since it depends on D(4, 3) ≤ UB.

0	   1	   2	   3	   4	   5	   6	  

3	   ∞	   ≤	  UB	  

4	   ∞	   >	  UB	   >	  UB	   ≤	  UB	   ≤	  UB	  

5	   ∞	   A	   B	   C	   ≤	  UB	  

6	   ∞	   ≤	  UB	  

sc 

Figure 3: Pruning in the lower triangular matrix

The initial value of the variable sc is 1, i.e., while
no values greater than UB are found, the calculation in
each row will start at the first column. In the case that
a warping window is used, the rows will be initiated in
the column with the highest index between the column
established by the warping window and the one related
to the pruning criteria (Algorithm 1, line 11).

Notice that the main diagonal cells (in red) are
marked as smaller than or equal to UB. This occurs be-
cause, as mentioned before, all warping paths are mono-
tonically increasing and the main diagonal corresponds
to ED. This ensures that for a row i, sc ≤ i and our
pruning is confined to the lower triangular matrix. This
is an important observation, given that we will later
update the UB as we fill the DTW matrix.

The second pruning strategy is responsible for prun-
ing the upper triangular matrix. This strategy defines
the column where we can stop the calculation of the
next row. The variable ec stores the column where the
first of a sequence of values greater than UB starts and
goes until the end of the current row.

Figure 4 illustrates the idea. In this example, row
1 is processed and ec is set to 4. The variable ec is
marking the first value of a sequence of values greater
than UB that finishes at the end of the row (Algorithm
2, line 10). We can stop the row 2 as soon as two criteria
are met: (i) the calculated value is greater than UB and
(ii) the current column index is greater or equal to ec.
Suppose that the cell A is greater than UB. In this case,
criterion (ii) is not met. We can see that cell B may be
smaller than UB since it can use D(1, 3) which is lower
or equal to UB. However, if B is greater than UB then

both criteria are met and we can stop processing line 2.
This occurs because variables C and D can only inherit
values from the matrix that are greater than UB.

0	   1	   2	   3	   4	   5	   6	  

0	   0	   ∞	   ∞	   ∞	   ∞	   ∞	   ∞	  

1	   ∞	   ≤	  UB	   ≤	  UB	   ≤	  UB	   >	  UB	   >	  UB	   >	  UB	  

2	   ∞	   ≤	  UB	   A	   B	   C	   D	  

3	   ∞	   ≤	  UB	  

ec 

Figure 4: Pruning in the upper triangular matrix

There is a subtle detail in the algorithm that allow
us to initialize ec = 1, instead of ec = M . This occurs
because of the initialization of the DTW matrix with
infinite values. Therefore, ec = 1 actually marks the
first column in row 0 that is greater than UB.

5.3 Iteratively Updating the Upper Bound An
interesting point about the DTW algorithm is that the
matrix D stores the costs of the optimal paths from
(1, 1) to (i, j). This means we can use such partial
optimal matching to update the UB value. In the case
where sqED is adopted as UB, every time we compute
a main diagonal cell D(i, i) we are in position to update
UB.

For this purpose, we also need the partial values
of the UB calculation. Since the calculation of sqED
does not depend on the order in which we calculate the
distance between each pair of observations, we calculate
this measure in reverse order, i.e., from the end to
the beginning of the time series. At each step of the
calculation, we store the partial value obtained in a
vector sqEDpartials, according to Equation 5.3. Notice
that the calculation of sqEDpartials is still O(N) when
computed in the reverse order.

(5.3) sqEDpartials(i) =

N∑
j=i

(xj − yj)
2

Once we computed D(i, i), we have all the neces-
sary information to update the UB, according to Equa-
tion 5.4.

(5.4) UB = D(i, i) + sqEDpartials(i + 1)

This equation updates the UB with the optimal
DTW alignment of the first i observations summed to
the squared Euclidean distance between the observa-
tions ahead of i. Thus, the value of UB becomes in-
creasingly tighter in relation to the optimal DTW value,
as we proceed in the computation of the matrix. Notice
that D(i, i) is always smaller or equal to the Euclidean



distance of the first i observations of the time series.
Therefore, the pruning power of our method increases
at each iteration.

At first glance, the use of Euclidean distance as UB
restricts our proposal to the comparison of time series
of the same length. Such restriction occurs because
ED is only defined for objects of the same length.
However, we can easily circumvent such restriction. Let
N be the length of the shorter time series. A UB
can be obtained by calculating the squared Euclidean
distance between the first N observations summed to
the distance between the remaining values of the longer
time series to the last observation of the shorter time
series. There are other possible UB since any warping
path is a UB for DTW. We will further explore this fact
in the next section.

Our implementation has some additional features
such as a linear space complexity. We do not describe
such features in details here because they are not the
main contributions of this paper. We have built a web-
site in which we made available all detailed numerical
results, source code and supplemental material not in-
cluded in this paper [9]. However, we note that our pa-
per is completely self-contained. In addition, our web-
site provides a proof of the correctness of our algorithm.

5.4 Other UB Approaches So far we have only
considered the sqED as UB. However, any measure that
is an upper bound of DTW can be used, as far as the
cost of its calculation does not compromise the overall
cost of the algorithm.

The use of other UB approaches has two immediate
consequences for our work. The first one is that we
can use the true DTW distance as UB. Even if such an
approach is not practical in real situations, it provides
us the best-case analysis in which the algorithm would
prune the highest possible number of cells. Figure 5
shows an example of this fact. Note how the pruning
in is much more aggressive by using the actual DTW as
UB. The use of a tight UB may even prune cells in the
main diagonal of the matrix.

The second consequence will be better explored in
Section 6.4. In most of experimental analyses, we need
to perform a search for the best warping window size.
The näıve approach for this is simply run the DTW
algorithm multiple times, calculating the all-pairwise
matrix for each warping window size. However, we
can speed-up this approach by using the optimal DTW
distance calculated for a smaller warping window as UB
for the next (larger) window size to be assessed.
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Figure 5: Regions of the DTW matrix pruned by our
proposed criteria (in white) by using the sqED (left)
and the true DTW (right) upper bounds for the same
pair of time series. The red lines show the positions of
the main diagonal cells

6 Experimental Evaluation

As we are proposing an exact method, the main way of
assessing our results is the running time of the algorithm
for the computation of the all-pairwise distance matrix.

We were extremely careful to measure the runtimes
of the algorithms in order to provide meaningful exper-
imental results. We used identical DTW implementa-
tions with and without the pruning method. Therefore,
the difference in time between them can be only ex-
plained by the proposal in this paper.

We ran all the experiments on the same computer5.
At any time, there was only one process computing
DTW distances. In order to reduce the variance caused
by other processes outside our control6, we executed
each method three times and reported the average
running times.

We notice that we are very committed to the
reproducibility of our results. For this purpose, the
web page for this paper [9] contains all source code and
detailed results obtained in our experiments.

6.1 Benchmark Datasets In order to assess the ef-
ficiency of PrunedDTW, we performed an experimental
evaluation using 10 freely-available benchmark datasets.
Specifically, all datasets are from the UCR Time Series
Classification/Clustering Page [2].

We chose data sets with time series with at least
500 observations. Although our method can be used
with time series of any length, the calculation of all-
pairwise distance matrix of short time series can be done
relatively fast with the traditional algorithm.

6.2 On the Warping Window Length Our exper-
imental analysis is highly dependent on the warping
window length. For this reason, before we introduce

5The experiments were carried out in a desktop computer with
12 Intel(R) Core(TM) i7− 3930K CPU @ 3.20GHz and 64Gb of
memory running Debian GNU/Linux 7.3.

6Such as process running operating system tasks.



our results, we will discuss the relevance of this param-
eter. Empirical evidence points to the fact that small
window sizes provide superior 1-NN classification accu-
racy [5]. On the other hand, there are no conclusive
studies about this parameter for different algorithms or
mining tasks, including clustering.

The assumption that small windows are the most
suitable for time series matching is commonly accepted
in the literature. However, there are few exceptions. An
example is the classification method proposed by [4].
In their empirical evaluation, the addition of DTW
features calculated with no warping window improved
the results considerably in comparison to the classifier
that just uses features with constrained DTW. Actually,
such improvement allowed their method to obtain a
statistically significant difference over 1-NN-DTW.

We performed a quick experiment to evaluate
whether the assumption of small warping windows also
applies to some well-known clustering algorithms. We
evaluated the performance of the hierarchical clustering
with complete linkage and k-medoids algorithm using
eight different values for warping window length: 5%,
10%, 15%, 20%, 30%, 40%, 50%, and 100% of the time
series length. For each of the 10 datasets evaluated in
our experiment, we measured the rand index and the
silhouette.

Figure 6 summarizes the results. This graph
presents the count of cases in which the best result for
a given clustering algorithm and an evaluation measure
was obtained for each value of warping window length.
In case of a tie, all tied windows are counted. The dis-
tribution of the best results among the different lengths
supports the recommendation to researchers and prac-
titioners to look for several values of window length for
new data sets, including the DTW with no warping win-
dow.
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Figure 6: Count of cases in which the best result was
obtained by each evaluated warping window length

6.3 Runtime for All-Pairwise DTW Matrices
Given the importance of warping windows in both ac-
curacy and execution times, we performed our experi-

ments varying such parameter. We evaluated the time
to calculate the distances matrices using windows with
relative length of 10%, 20%, 30%, 40%, 50%.

Figure 7 graphically shows the results. We present
the results of the three methods: DTW stands for the
standard DTW algorithm, PrunedDTW is our proposal
using sqED as UB and OracleDTW is our proposal with
the true DTW as UB. Although OracleDTW cannot be
used in practice, its results are optimal in the sense that
they represent the highest possible number of pruned
cells that our method could achieve with a (imaginary)
perfect constant time UB. So, OracleDTW provides a
reference of the best performance that could be obtained
by PrunedDTW.

PrunedDTW outperformed DTW in most of the
cases. This indicates that the overhead of the pruning
tests (which increases the constant of the computational
complexity) are usually compensated by the number
of pruned cells. In some cases in which the warping
window is small (usually 10%), PrunedDTW could not
achieve a significant speed-up. This is expected since
warping windows significantly reduce the number of
cells that need to be computed, leaving little space for
improvements. As the warping windows are increased,
PrunedDTW obtains more significant speed-ups. For a
50%-band size, the speed-ups of PrunedDTW relative
to the computation time of DTW are in the range of
12.01% to 89.61%.

The gain obtained by PrunedDTW over DTW is
commonly larger than the gain of OracleDTW over
PrunedDTW, indicating that ED was able to obtain
most of the achievable speed-up for these datasets.
However, the cases in which it is not true to reveal the
need of research for other upper-bound methods.

We note that we have performed additional experi-
ments with DTW approximations as UB, whose results
are not described in this paper. The ED presented the
best compromise between tightness to DTW and time
complexity among the evaluated functions.

6.4 Accumulative Runtime for All-Pairwise
DTW Matrices The results in Figure 7 represent
the scenario in which the user knows which warping
window size is the best for its application domain. A
more realistic experiment would involve computing the
running times for the calculation of pairwise distance
matrices for several warping window sizes, simulating a
search for an optimal value to this parameter.

As we showed in the Section 6.2, the search for
the optimal value of warping window length is required
for a good performance of some time series mining
algorithms. For this reason, we believe that it is
important for any DTW speed-up method to support
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Figure 7: Time (in seconds) to calculate the all-pairwise DTW distances with different warping window sizes

warping windows so that the user can observe the
impact of such parameter over the data at hand.

In the case of the interest in calculating the all-
pairwise DTW matrix with the conventional algorithm,
the trivial approach is to run the algorithm multiple
times. In that case, no information is reused. This
occurs because the newly computed cells are very likely
to influence the already computed cells. In that case,
most of the matrix cells would have to be recomputed.

Regarding PrunedDTW, we can simply use the
distance computed for a smaller window size as UB for
a larger window size. A distance computed for a smaller
warping window is always smaller or equal to the sqED
and, therefore, can be a more effective UB than sqED.
For the first run, i.e., for the smallest window, there is
no previous DTW distance to be used as UB. In this
case, we can naturally adopt the sqED as UB.

Figure 8 presents the results. There is a signifi-
cant difference between these results and the ones pre-
sented in Figure 7. In Figure 8 the running times for
a given warping window size r means the accumulative
time necessary to calculate the matrices for all warp-
ing windows smaller and equal to r. In this setting,
PrunedDTW is even more effective, obtaining very sim-
ilar speed-ups to the ones obtained with OracleDTW.

6.5 Comparison with FastDTW As we are not
aware of other approaches to speed-up the exact all-
pairwise DTW computation, it is natural to find diffi-
culties to compare to the state-of-the-art. One possi-
bility is the comparison to approximate DTW methods.
This is not an entirely fair comparison, since the ap-
proximate methods will trade approximation accuracy
by speed when PrunedDTW has zero approximation er-
ror.

We chose to compare our approach to FastDTW,
since it is the most well-known approximation of DTW

in the literature. However, we believe that our method
is superior to FastDTW, for the following reasons:
our method is exact, FastDTW is approximated; our
method supports warping windows, FastFTW only
works with unconstrained matrices; our method has
no parameters, FastDTW has a parameter r (radius)
that influences its accuracy and running time; and our
method is simple to understand and implement, Fast-
DTW is a sophisticated method with intricate details
such as increasing data resolutions.

Since FastDTW does not support Sakoe-Chiba
band, we evaluated the time to calculate the all-pairwise
matrix for the unconstrained DTW. Table 1 presents the
results in percentage of the time spent by conventional
DTW algorithm.

Table 1: Percentual runtime of FastDTW and Pruned-
DTW relative to the conventional DTW algorithm
Dataset FastDTW PrunedDTW
Car 40.53% 39.68%
CinC ECG Torso 26.52% 80.02%
Haptics 28.01% 63.99%
InlineSkate 23.29% 63.96%
Lightning-2 43.85% 79.05%
MALLAT 27.63% 31.74%
Non-Invasive Fetal ECG Thorax1 37.53% 32.98%
Non-Invasive Fetal ECG Thorax2 37.26% 33.71%
Olive Oil 38.21% 10.96%
Starlight Curves 30.52% 61.95%

Both methods are more efficient than the conven-
tional DTW for all datasets. Although we noticed it
is an unfair comparison, PrunedDTW achieved better
or similar results (differences under 7%) than FastDTW
in half of the evaluated datasets. Besides the fact that
FastDTW achieved better runtime results in the other
5 datasets, they are the datasets in which results of
PrunedDTW are far from OracleDTW, reinforcing the
need of new upper bound approaches.
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Figure 8: Accumulative time (in seconds) to calculate the all-pairwise DTW distances with different warping
window sizes. The distance calculated for a smaller window size is used as UB for the next larger window size

7 Conclusion and Future Work

In this paper, we proposed a novel method to speed-up
the calculation of Dynamic Time Warping between time
series. Differently from the previous work in literature,
our method does not rely on a best-so-far or distance
approximations. So, our proposal is adequate for any
application that requires the distance between every
pair of objects. The results show that our method is
faster than the conventional DTW algorithm, especially
in cases in which we want to calculate distances for
different warping windows values or we want to use large
constraint bands or unconstrained DTW.

As for the future work, we intend to explore the
application of our proposal in different time series
mining tasks and also in multidimensional time series
scenarios. We also intend to evaluate the impact of
different upper bounds. A possible direction to find
new upper bound functions is to look for adaptations of
bounding functions used in other applications domains,
such as the computational biology.
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